
Preventing Capability Leaks in Secure JavaScript Subsets

Matthew Finifter, Joel Weinberger, and Adam Barth
University of California, Berkeley

{finifter, jww, abarth}@cs.berkeley.edu

Abstract

Publishers wish to sandbox third-party advertisements
to protect themselves from malicious advertisements. One
promising approach, used by ADsafe, Dojo Secure, and
Jacaranda, sandboxes advertisements by statically verify-
ing that their JavaScript conforms to a safe subset of the
language. These systems blacklist known dangerous proper-
ties that would let advertisements escape the sandbox. Un-
fortunately, this approach does not prevent advertisements
from accessing new methods added to the built-in prototype
objects by the hosting page. In this paper, we show that one-
third of the Alexa US Top 100 web sites would be exploitable
by an ADsafe-verified advertisement. We propose an im-
proved statically verified JavaScript subset that whitelists
known-safe properties using namespaces. Our approach
maintains the expressiveness and performance of static ver-
ification while improving security.

1 Introduction

Much of the web economy is fueled by advertising rev-
enue. In a typical advertising scenario, a publisher rents a
portion of his or her web page to an advertising network,
who, in turn, sublets the advertising space to another adver-
tising network until, eventually, an advertiser purchases the
impression. The advertiser then provides content (an ad-
vertisement) that the browser displays on the user’s screen.
Recently, malicious advertisers have sought to exploit these
delegated trust relationships to inject malicious advertise-
ments into honest web sites [22, 27]. These attacks are
particularly worrying because they undermine confidence
in the core of the web economy.

For example, a malicious advertisement exploited The
New York Times web site [28] on September 13, 2009.
Although most of its advertisements are served via ad net-
works, The New York Times also includes some advertise-
ments directly from advertisers’ servers. In this case, a ma-
licious advertiser posed as Vonage and bought an advertise-
ment. The advertiser then changed the advertisement to take

over the entire window and entice users into downloading
fake anti-virus software. The New York Times removed the
ad but only after a number of visitors were affected.

To protect publishers and end users, advertising net-
works have been experimenting with various approaches
to defending against malicious advertisements. Although
there are a wide variety of approaches, ranging from legal
remedies to economic incentives, we focus on technological
defenses. At its core, displaying third-party advertisements
on a publisher’s web site is a special case of a mashup. In
this paper, we study whether existing techniques are well-
suited for containing advertisements and propose improve-
ments to mashup techniques based on static verifiers.

Static verifiers, such as ADsafe [13], Dojo Secure [30],
and Jacaranda [15], are a particularly promising mashup
technique for advertising. In this approach, the advertising
network (and one or more of its syndicates) verifies that the
advertisement’s JavaScript source code conforms to a par-
ticular subset of the JavaScript language with desirable con-
tainment properties (see Figure 1). The precise JavaScript
subset varies between systems, but the central idea is to re-
strict the guest advertisement to a well-behaved subset of
the language in which the guest can interact only with ob-
ject references explicitly and intentionally provided to the
guest by the host, thus preventing the guest from interfering
with the rest of the page.

In this paper, we focus on evaluating and improving the
containment of safe JavaScript subsets that use static ver-
ification. Static verifiers are appealing because they pro-
vide fine-grained control of the advertisement’s privileges.
For example, the hosting page can restrict the advertise-
ment to instantiating only fully patched versions of Flash
Player, preventing a malicious advertisement from exploit-
ing known vulnerabilities in older versions of the plug-
in. However, existing static verifiers do not provide per-
fect containment. To properly contain advertisements, these
systems impose restrictions on the publisher: the publisher
must avoid using certain JavaScript features that let the ad-
vertisement breach containment.

These static verifiers impose restrictions on publishers
because of a design decision shared by the existing static



Web Page

Publisher
Syndicated
Advertising

Network
Advertiser

<script> 
...

</script>
Safe?Safe?

Major
Advertising

Network

Figure 1. A publisher sells space on his or her page to an advertising network. This space may
be resold through multiple advertising networks, until it is sold to an advertiser, who provides an
advertisement written in a secure JavaScript subset. The advertisement is checked for safety by
each advertising network, in turn, and ultimately served to visitors of the publisher’s web page.

verifiers: the verifiers restrict access to object properties us-
ing a static blacklist. The blacklist prevents the guest from
accessing properties, such as __proto__, that can be used
to breach containment. The designers of the subsets warrant
that their blacklist is sufficient to prevent an advertisement
from breaching containment on an otherwise empty page in
their supported browsers (or else the subset would always
fail to contain advertisements), but the blacklist approach
does not restrict access to new properties introduced by the
publisher. For example, a publisher might add a right
method to the string prototype that has not been vetted by
the subset designer.

This restriction raises a natural question: how commonly
do publishers violate this requirement? If publishers rarely
expose new methods (or rarely expose exploitable meth-
ods), then this restriction is fairly innocuous. If publishers
commonly expose methods that are exploitable, however,
then we ought to consider improving these mashup tech-
niques. To answer this question, we designed and imple-
mented an analysis tool that detects which host methods are
exposed to guest advertisements. We ran our tool on the
non-adult web sites in the Alexa US Top 100 [1] to deter-
mine (1) how often sites add methods to prototypes and (2)
how many of these methods could be used to breach con-
tainment. To measure (1), we rendered the web sites in an
instrumented browser that recorded the “points-to” relation
among JavaScript objects in the JavaScript heap. Our tool
then analyzed the heap and outputted the source code of
methods created by the hosting page that would have been
exposed to an ADsafe-verified advertisement. To answer
(2), we manually analyzed the source code of these meth-
ods to determine which sites would have been exploitable
by a malicious ADsafe-verified advertisement.

Of the non-adult web sites in the Alexa US Top 100,
we found that 59% (53 of 90) exposed new properties to
the guest and that 37% (33 of 90) of these sites contained
at least one method that could be exploited by an ADsafe-
verified advertisement to mount a cross-site scripting (XSS)
attack against the publisher. Although the publisher can
avoid exposing exploitable methods, even seemingly in-
nocuous methods are exploitable, such as this implemen-
tation of right found on people.com:

String.prototype.right = function(n) {
if (n <= 0) {
return "";

} else if (n > String(this).length) {
return this;

} else {
var l = String(this).length;
return String(this).

substring(l, l - n);
}

}

We discuss the exploit in detail in Section 4.5. Of the sites
with more than 20 exposed properties, only tagged.com
managed to avoid exposing an exploitable method.

Instead of requiring publishers to vet their exposed meth-
ods, we propose eliminating this attack surface by replacing
the property blacklist with a whitelist, making static veri-
fiers more robust. Using a technique similar to script accent-
ing [11], we prevent the guest advertisement from accessing
properties defined by the hosting page unless those proper-
ties are explicitly granted to the guest. Specifically, we re-
strict the guest to a namespace by requiring all the guest’s
property names to be prefixed with the guest’s page-unique



identifier (which already exists in ADsafe). A guest re-
stricted in this way will not be able to access methods added
to the prototype objects by the host because the names of
those methods are not in the guest’s namespace.

We show that our safe JavaScript subset is as expressive
and as easy-to-use as ADsafe by implementing a simple
compiler that transforms any ADsafe-verified guest into our
proposed subset by prepending the namespace identifier to
all property names. Our compiler is idempotent: the com-
piler does not alter code that is already contained in the sub-
set. This property lets us use our compiler as a static verifier
for the subset. To check whether a piece of JavaScript code
conforms to the subset, one need only run the code through
the compiler and check whether the output of the compiler
is identical to the input. Idempotency lets each advertising
network in the syndication chain apply the compiler to each
advertisement without worrying about transforming the ad-
vertisement more than once. To protect against a malicious
advertising network, the downstream parties (e.g., advertis-
ing networks or publishers) can verify each advertisement.

Contributions. We make two main contributions:

• We show that existing static verifiers fall short of
defending against malicious advertisements because
many publisher web sites use JavaScript features that
let the advertisements breach containment.

• We propose a modification these static verifiers that
lets publishers host malicious advertisements without
requiring the publishers to rewrite their JavaScript.

Organization. The remainder of this paper is organized
as follows. Section 2 surveys related work. Section 3 de-
tails safe JavaScript subsets based on statically verified con-
tainment. Section 4 describes our experiment for detecting
breaches of containment and reports the results of the ex-
periment. Section 5 proposes Blancura, a safe JavaScript
subset based on whitelisting. Section 6 concludes.

2 Related Work

In this section, we survey related work, which falls into
two categories: (1) techniques or experiments related to
those described herein and (2) other approaches for con-
structing secure mashups.

2.1 Related Techniques and Experiments

In previous work [10], we used our JavaScript heap anal-
ysis framework to find browser bugs that cause cross-origin
JavaScript capability leaks and compromise the browser’s
implementation of the same-origin policy. Our framework

consists of two pieces: an instrumented browser that records
the “points-to” relation among JavaScript objects in the
JavaScript heap and an algorithm for detecting “interesting”
edges. In this paper, we reuse the first piece of the frame-
work in our experiment but replace the second piece with
a new algorithm that colors nodes based on whether or not
they are accessible to an advertisement running by itself on
the empty page. In contrast, our previous algorithm detects
pointers leaked from one origin to another, which is not ap-
plicable in this setting because all the objects that participate
in this sort of mashup are contained in the same origin.

In a series of papers [25, 24, 23], Maffeis, Taly, and
Mitchell develop a formal semantics for JavaScript and
prove the correctness of a specific static verifier (based on
FBJS) in their formal model. In the course of writing their
proof, they discovered that the host page can compromise its
security by extending the built-in prototype objects. They
reported this issue to the designers of ADsafe, who added
a restriction on the host’s behavior to ADsafe’s documen-
tation. However, despite recognizing the issue, the lan-
guage they propose [24] has the same limitations as other
blacklist-based static verifiers. We recommend that they
adopt our approach and replace their property-name black-
list with a whitelist.

Finally, Yue and Wang study how often web sites use
potentially dangerous JavaScript language features, such
as eval [29]. Similar to our methodology, the authors
render the web pages in question using an instrumented
browser. Unlike their study, ours is focused on a specific
security issue (extending the built-in prototype objects in
a way that lets a malicious advertisement breach contain-
ment), whereas their study measures a number of general
“security hygiene” properties.

2.2 Secure Mashup Designs

Safely displaying third-party advertisements is a special
case of the more general secure mashup problem in which
an integrator (e.g., a publisher) attempts to interact with a
collection of untrusted gadgets (e.g., advertisements). The
general mashup problem is more difficult than the adver-
tising problem because general mashup techniques aim to
provide a high degree of interactivity between the integra-
tor and the gadgets and also among the gadgets themselves.

A number of researchers propose mashup designs based
on browser frames (see, for example, [21, 20, 17, 12, 9]). In
these designs, the gadget can include arbitrary HTML and
JavaScript in a frame. The integrator relies on the browser’s
security policy to prevent the gadget from interfering in
its affairs. In general, these frame-based designs cover a
number of use cases, including advertising, but they have
a coarse-grained privilege model. For example, HTML5’s
sandbox attribute [6] can restrict the frame’s privileges



in a number of enumerated ways, but language-based de-
signs can grant finer-grained privileges not pre-ordained by
browser vendors. Specifically, a language-based mashup
can restrict the gadget to certain (e.g., fully patched) ver-
sions of specific plug-ins (e.g., Flash Player), whereas the
sandbox attribute is limited to allowing or denying all
plug-ins.

Gatekeeper [19] is a “mostly static” enforcement mech-
anism designed to support a rich policy language for com-
plex JavaScript widgets. Although mostly a static ana-
lyzer, Gatekeeper uses runtime enforcement to restrict some
JavaScript features, such as eval. To confine widgets,
Gatekeeper analyzes the whole JavaScript program, includ-
ing the page hosting the widget. This use of whole program
analysis makes Gatekeeper an awkward mechanism for re-
stricting the privileges of advertisements because the adver-
tising network typically does not have the entire source code
of every publisher’s web site.

Like the static verifiers we study in this paper, dynamic
enforcers, such as Caja [2] and Web Sandbox [3], restrict
gadget authors to a subset of the JavaScript language with
easier-to-analyze semantics. Unlike static verifiers, dy-
namic enforcers transform the source program by inserting
a number of run-time security checks. For example, Caja
adds a dynamic security check to every property access.
These dynamic enforcement points give these designs more
precise control over the gadget’s privileges, typically letting
the mashup designer whitelist known-good property names.

Inserting dynamic access checks for every property ac-
cess has a runtime performance cost. To evaluate the perfor-
mance overhead of these dynamic access checks, we used
the “read” and “write” micro-benchmarks from our previ-
ous study [10], which test property access time. We ran the
benchmarks natively, translated by each of Caja’s two trans-
lators (Cajita and Valija), and translated by Web Sandbox.
We modified the existing benchmarks in three ways:

1. We modified our use of setTimeout between runs
to conform to the JavaScript subset under test by using
a function instead of a string as the first argument.

2. Instead of running the benchmark in the global scope,
we ran the benchmark in a local scope created by a
closure. This improved the Valija benchmark enor-
mously because accessing global variables in Valija is
extremely expensive.

3. For Cajita and Valija, we reduced the number of itera-
tions from one billion to one million so that the bench-
mark would finish in a reasonable amount of time. For
Microsoft Web Sandbox, we reduced the number of
iterations from one billion to 10,000 because the Mi-
crosoft Web Sandbox test bed appears to have an exe-
cution time limit.

read write
Cajita 21% 20%
Valija 1493% 1000%
Microsoft Web Sandbox 1217% 634%

Table 1. Slowdown on the “read” and “write”
micro-benchmarks, average of 10 runs.

We ran the benchmarks in Firefox 3.5 on Mac OS X us-
ing the Caja Testbed [5] and the Microsoft Web Sandbox
Testbed [26].

Our findings are summarized in Table 1. The Cajita
translation, which accepts a smaller subset of JavaScript,
slows down the two micro-benchmarks by approximately
20%. Even though Cajita adds an access check to every
property access, the translator inlines the access check at
every property access, optimizing away an expensive func-
tion call at the expense of code size. Valija, which ac-
cepts a larger subset of JavaScript, slows down the read
and write micro-benchmarks by 1493% and 1000%, re-
spectively. Valija translates every property access into a
JavaScript function call that performs the access check, pre-
venting the JavaScript engine from fully optimizing prop-
erty accesses in its just-in-time compiled native code. Mi-
crosoft Web Sandbox performs similarly to Valija because
its translator also introduces a function call for every prop-
erty access. More information about Caja performance is
available on the Caja web site [7].

Dynamic enforcers are better suited for the generic
mashup problem than for the advertising use case specifi-
cally. In particular, advertising networks tend to syndicate a
portion of their business to third-party advertising networks.
When displaying an advertisement from a syndication part-
ner, an advertising network must verify that the advertise-
ment has been properly transformed, but verifying that a
dynamic enforcer’s transformation has been performed cor-
rectly is quite challenging. By contrast, static verifiers are
well-suited to this task because each advertising network in
the syndication chain can run the same static verification
algorithm.

3 Statically Verified Containment

One popular approach to designing a secure JavaScript
subset is to statically verify containment. This approach,
used by ADsafe [13], Dojo Secure [30], and Jacaranda [15],
verifies that the contained code is in a well-behaved subset
of the JavaScript language. In this section, we describe the
characteristics and limitations of the current languages that
use this approach.

One important use of these languages is to prevent
“guest” code (e.g., advertisements) from interfering with



the “host” web page running the guest code. The guest
script should be contained by the language to run as if it
were run by itself on an otherwise empty page. ADsafe is
specifically intended for this use [13], and proponents of
Dojo Secure and Jacaranda also envision these languages
used for this purpose [16, 30].

3.1 Containment Architecture

Secure JavaScript subsets that use statically verified con-
tainment prevent guests from using three classes of lan-
guage features, described below. If left unchecked, a guest
could use these language features to escalate its privileges
and interfere with the host page. The details of these re-
strictions vary from language to language. For the precise
details, please refer to the specifications of ADsafe, Dojo
Secure, and Jacaranda.

• Global Variables. These languages prevent the guest
script from reading or writing global variables. In par-
ticular, these languages require that all variables are
declared before they are used (to prevent unbound vari-
ables from referring to the global scope) and forbid the
guest from obtaining a pointer to the global object (to
prevent the guest from accessing global variables as
properties of the global object). For example, these
languages ban the this keyword, which can refer to
the global object in some contexts.

• Dangerous Properties. Even without access to global
variables, the guest script might be able to interfere
with the host page using a number of “special” prop-
erties of objects. For example, if the guest script were
able to access the constructor property of objects,
the guest could manipulate the constructors used by the
host page. The languages implement this restriction by
blacklisting a set of known-dangerous property names.

• Unverifiable Constructs. Because dynamically gen-
erated scripts cannot be verified statically, these lan-
guages also ban language constructs, such as eval,
that run dynamic script. In addition to dynamic code,
the languages also ban dynamic property access via
the subscript operator (e.g., foo[bar]) because bar
might contain a dangerous property name at run time.
These languages typically do allow dynamic prop-
erty access via a library call, letting the library check
whether the property being accessed at runtime is on
the blacklist, and if not, allow the access.

These languages enforce the above-mentioned restrictions
using a static verifier. The verifier examines the source
code of the guest script and checks whether the script ad-
heres to the language’s syntactic restrictions. In typical

deployments, these languages provide the guest script a li-
brary for interacting with the host page. For example, AD-
safe provides widgets with a jQuery-style library for ac-
cessing a subset of the hosting page’s Document Object
Model (DOM). These libraries typically interpose them-
selves between the guest script and the host objects, pre-
venting the guest from interacting with the host in harmful
ways. For example, the library might restrict the guest to
part of the DOM by blocking access to the parentNode.
Even in languages that statically verify containment, these
libraries often involve dynamic access checks.

3.2 Limitations

ADsafe, Dojo Secure, and Jacaranda all block access to
dangerous properties using a blacklist. When analyzing a
guest script, the static verifier ensures that the script does
not use these specific property names. This approach works
well on the empty page where the set of property names
is known (at least for a fixed set of browsers), but this ap-
proach breaks down if the host inadvertently adds danger-
ous properties to built-in object prototypes because these
new properties will not be on the verifier’s blacklist [24].

When the host page extends the built-in object proto-
types by adding new properties, those properties are visible
on all objects from that page. For example, if the host page
added the function right to String.prototype, then
the right property would be visible on all strings because
the JavaScript virtual machine uses the following algorithm
to look up the value of a property of an object:

1. Check whether the property exists on the object itself.
If so, return the value of the property.

2. Otherwise, continue searching for the property on
the object’s prototype (identified by the __proto__
property), returning the value of the property if found.

3. If the object does not have a prototype (e.g., be-
cause it’s the root of the prototype tree), then return
undefined.

All the prototype chains in a given page terminate in the
Object.prototype object. If the host page adds a
property to Object.prototype, the property will ap-
pear on all objects in the page. Similarly, adding a property
to String.prototype or Array.prototype causes
the property to appear on all strings or arrays (respectively).

For this reason, ADsafe explicitly admonishes host pages
not to extend built-in prototypes in dangerous ways:

None of the prototypes of the builtin types may
be augmented with methods that can breech [sic]
ADsafe’s containment. [13]



However, ADsafe also says that “ADsafe makes it safe to
put guest code (such as third party scripted advertising or
widgets) on any web page” [13]. These two statements ap-
pear to be in conflict if web sites commonly augment built-
in types with methods that breach ADsafe’s containment.

4 Detecting Containment Breaches

In this section, we evaluate whether existing static veri-
fiers can be used to sandbox advertisements on popular web
sites. We automatically detect “unvetted” functions exposed
to guest scripts and then examine these function to deter-
mine whether they introduce vulnerabilities that could be
exploited if the page hosted ADsafe-verified ads.

4.1 Approach

To detect when objects created by the host page are
accessible to the guest, we load the host page in an in-
strumented browser. The instrumented browser monitors
JavaScript objects as they are created by the JavaScript vir-
tual machine. Our instrumentation also records the “points-
to” relation among JavaScript objects. Whenever one object
is stored as a property of another object, we record that edge
in a graph of the JavaScript heap.

To determine whether an object created by the host page
is accessible to the guest, we compare the set of JavaScript
objects accessible to the guest script on the empty page
with the set accessible to the guest script on the host page.
We call an edge from an object in the first set to an object
in the second set suspicious. The designers of the secure
JavaScript subset vet the objects accessible to the guest on
the empty page to ensure that guest code cannot breach con-
tainment using those objects (or else the subsets would fail
to be secure on virtually every page), but the guest script
might still be able to leverage suspicious edges to escape
the sandbox.

Not all suspicious edges are exploitable. For example,
if the host exposes only the identity function to the guest,
the guest cannot leverage this function to escalate its priv-
ileges. However, if the host defines a function that calls
eval on its argument and exposes that function to the guest
script, then the guest script can compromise the host com-
pletely. To determine whether a suspicious edge lets a guest
breach containment, we examined the source code of newly
accessible functions. If we are able to construct a proof-of-
concept guest script that exploits such a function, we say
that the host page has violated the containment policy.

4.2 Design

To compute the set of suspicious edges, we classify ob-
jects in the host page’s JavaScript heap into two sets:

• Vetted. The vetted objects are the JavaScript objects
accessible by the guest script on the empty page. In
particular, the objects created by the guest script itself
are vetted, as are objects reachable from those objects
on the empty page. We rely on the designer of the
secure JavaScript subset to ensure that these objects
are safe for the guest script to access.

• Unvetted. The unvetted objects are the JavaScript ob-
jects that are not accessible by the guest script on the
empty page. For example, all the objects created by
the host page are unvetted because those objects are
not present on the empty page. As another example,
the document object is unvetted because it is not ac-
cessible by the guest script on the empty page, even
though document exists on the empty page.

We use a maximal guest to detect the set of vetted objects.
The maximal guest accesses the set of built-in objects al-
lowed by the rules of the safe JavaScript subset.1 Note that
creating multiple instances of these objects does not expand
the set of built-in objects reachable by the guest.

We classify the objects in the JavaScript heap for a given
page as vetted or unvetted using a two phase algorithm. We
load the page in question via a proxy that modifies the page
before it is rendered by an instrumented browser.

• Phase 1: Before loading the page’s HTML, the proxy
injects a script tag containing the maximal guest. The
instrumented browser seeds the set of vetted objects
by marking the objects created by the maximal guest
as vetted. We expand the set to its transitive closure
by crawling the “points-to” relation among JavaScript
objects in the heap and marking each visited object as
vetted (with some exceptions noted below). Just prior
to completing, the maximal guest calls a custom API
to conclude the first phase.

• Phase 2: After the maximal guest finishes execut-
ing, all the remaining JavaScript objects in the heap
are marked as unvetted. As the instrumented browser
parses the host page’s HTML and runs the host’s
scripts, the newly created objects are also marked as
unvetted. Whenever the instrumented browser detects
that the host page is adding an unvetted object as a
property of a vetted object, the browser marks the

1For ADsafe, the maximal guest we constructed instantiates one each
of the following object types: Function, Object, Array, RegExp,
String, Error, EvalError, RangeError, ReferenceError,
SyntaxError, TypeError, and URIError. The only built-in ob-
jects defined by WebKit but absent from this list are Number, Boolean,
and Date. Date objects are disallowed in ADsafe code. Numeric and
Boolean literals (but not objects) can be constructed by ADsafe code, but
these were not included in our maximal guest due to an implementation
error. Because of this and other factors, our result regarding the fraction of
exploitable sites is a lower bound.



Empty Page

Guest

(a) Before loading host code

Empty Page

Guest Host

(b) During loading of host code

Figure 2. Depiction of a simple heap graph. In (a), all nodes are vetted nodes. In (b), a suspicious
edge has been detected. The host code has added a pointer that provides the guest code with access
to an unvetted object. The suspicious edge points from the prototype of a built-in object to a method
defined by the host.

corresponding edge in the heap graph as suspicious
and records the subgraph reachable via this suspicious
edge. The dashed line in Figure 2 represents such a
suspicious edge.

One difficulty is knowing when to end the second phase.
In principle, a web page could continue to add suspicious
edges indefinitely. In practice, however, most of the sus-
picious edges we found were added by “library code” that
is run while the page is loading so that most scripts in the
page can make use of the extensions provided by the library.
To terminate Phase 2, the proxy inserts a script tag after the
page’s HTML that calls a custom API.

When computing the set of vetted objects as the tran-
sitive closure of the initial vetted objects, the instrumented
browser considers only edges in the “points-to” relation that
can be traversed by guest scripts in the safe subset. For
example, in ADsafe, guest scripts cannot access properties
with certain names, such as arguments, constructor,
and eval. Additionally, ADsafe guests cannot access any
properties with names that begin with an underscore char-
acter. These properties are ignored in computing the tran-
sitive closure, with one notable exception: __proto__.
Although the guest script cannot access __proto__ ex-
plicitly, the guest script can access the property implicitly
because this property is used by the algorithm described in
Section 3.2 for resolving property names.

4.3 Implementation

We implemented our instrumented browser by modi-
fying WebKit, the open-source browser engine that pow-
ers Safari and Google Chrome. Our work builds off
of our previous JavaScript heap inspection implementa-
tion [10]. We implemented our HTTP proxy in Perl
using the HTTP::Proxy library. The proxy modifies
text/html HTTP responses in flight to the browser. Be-
cause the browser can parse malformed HTML documents
with a <script> before the main <html> and after the
main </html>, we did not need to modify the response
except to prepend and to append the required script blocks.

4.4 Experiment

To evaluate whether web sites commonly use JavaScript
features that breach the containment of existing statically
verified JavaScript subsets, we analyzed the Alexa US
Top 100 web sites using our breach detector for ADsafe.
This set of web sites was chosen to represent the level of
complexity of JavaScript code found on popular web sites.
Although this set might not be representative of all web
sites, malicious advertisements on these web sites impact
a large number of users.



4.4.1 Methodology

We retrieved the list of Alexa US Top 100 web sites and
tested those web sites in May 2009. Instead of using the
home page of every site on the list, we made the following
modifications:

• We removed all 9 web sites with adult content. (We
were unsure whether our university permits us to
browse to those web pages in our workplace.)

• We removed blogspot.com because its home page
redirected to blogger.com, which was also on the
list. The blogspot.com domain hosts a large num-
ber of blogs, but the Alexa list did not indicate which
blog was the most popular, and we were unsure how to
determine a “representative” blog.

• For some web sites, the home page is merely a “splash
page.” For example, the facebook.com home page
is not representative of the sorts of pages on Face-
book that contain advertisements. Using our judg-
ment, we replaced such splash pages with more rep-
resentative pages from the site. For example, on
facebook.com, we chose the first page presented
to the user after login.

We then used the algorithm described above to detect suspi-
cious edges in the JavaScript heap graph of the main frame
created by visiting each of the 90 web pages we selected
for our experiment. We observed the number of suspicious
edges for each page as well as the source code of the ex-
posed methods. We then manually analyzed the source code
of the exposed methods to determine whether the suspicious
edges would have been exploitable had the selected web
pages hosted ADsafe-verified advertisements. Upon find-
ing one exploitable method for a given site, we stopped our
manual analysis of the remaining exposed methods for that
site because an attacker needs only one vulnerability to con-
struct an exploit.

One potentially fruitful area of future work is to auto-
mate this manual analysis step to scale our analysis tech-
nique to a larger population of web sites (such as the
entire web). In fact, we used a crude static analysis
framework based on regular expressions (e.g., grep for
return\s+this and eval) to help us find vulnerabil-
ities faster. Even with these simple tools, the manual analy-
sis required only a number of hours.

4.4.2 Results

In our experiment, we observed the following:

• Of the web pages, 59% (53 of 90) contained at least
one suspicious edge.

• We were able to construct proof-of-concept exploits
for 37% (33 of 90) of the web pages.

Figure 3 summarizes our results. We observed a max of 72
suspicious edges and a mean of 16.2 (n = 90, σ = 23.8).

4.4.3 Discussion

Our experiment lower bounds the number of analyzed sites
that could be exploitable by a malicious ADsafe-verified
advertisement because we might not have found every sus-
picious edge or every exploit. The histogram in Figure 3
shows that the number of suspicious edges is correlated with
exploitability. Although not all functions are exploitable
(and not all suspicious edges lead to functions), many com-
mon JavaScript programming idioms (such as returning
this) are exploitable. Of the sites with 20 or more sus-
picious edges, all but one violate containment. The one
site that did not violate containment, tagged.com, did
not contain any unvetted functions.

4.5 Case Studies

We illustrate how a malicious guest can use functions
supplied by the host page to compromise the security of the
sandbox by examining two case studies from popular web
sites. In all the cases we examined, when a guest could es-
calate its privileges using host-supplied functions, the guest
could run arbitrary script with the authority of the hosting
page, completely breaching containment.

4.5.1 People

We first examine people.com, a magazine. People aug-
ments the String prototype object with a number of util-
ity methods, including a method right that extracts the n
right-most characters of the string. As an optimization, the
function returns the original string (designated by this) if
it contains fewer than n characters. Although apparently
benign, this optimization lets a guest breach containment.

When a JavaScript function is called as a method of an
object (e.g., as in obj.f()), the this keyword refers to
that object (e.g., obj). However, if a function is called
in the global scope (e.g., as in f()), then the this key-
word refers to the global object, commonly known as the
window object. By removing the right function from
a primitive string, as shown in Figure 4, a malicious guest
can call the function in the global scope, binding this to
the global object. By supplying a sufficiently large value
for n, the host’s function will return the global object to the
attacker. Once the attacker has access to the global object,
the attacker can use any number of methods for running ar-
bitrary script with the host’s authority.



No	
  suspicious	
  edges	
  

At	
  least	
  one	
  suspicious	
  
edge,	
  no	
  exploit	
  found	
  

Exploitable	
  

(a) Percentage of sites with no suspicious edges, those with suspi-
cious edges that we were not able to exploit, and those that we were
able to exploit.

0 

5 

10 

15 

20 

25 

30 

35 

40 

0  1‐10  11‐20  21‐30  31‐40  41‐50  51‐60  61‐70  71‐72 

Exploitable  No exploit found 

(b) Histogram depicting the number of sites for different ranges of
numbers of violations, as well as the fraction of those for which at
least one exploit was found.

Figure 3. Visual depictions of the results of the experiment.

String.prototype.right = function(n) {
if (n <= 0) {

return "";
} else if (n > String(this).length) {

return this;
} else {

var l = String(this).length;
return String(this).substring(l, l - n);

}
}

(a) Relevant host code

<div id="GUESTAD_">
<script>
"use strict";
ADSAFE.go("GUESTAD_", function (dom, lib) {
var f = "Hello".right;
f(100).setTimeout("... attack code ...", 0);

});
</script>
</div>

(b) ADsafe-verified guest code implementing exploit

Figure 4. Exploit for people.com

4.5.2 Twitter

Next, we examine twitter.com, a social network. Twit-
ter makes use of the Prototype JavaScript library [8], which
adds a number of useful functions to the default JavaScript
environment. The exploit we describe for Twitter is applica-
ble to every web site that uses the Prototype Library, includ-
ing numerous prominent sites [4]. Moreover, we argue that
the particular function we exploit in the Prototype Library
is not an isolated example because the primary purpose of
the Prototype Library is to augment the built-in prototype
objects with useful (but potentially exploitable) functions.

The Prototype Library adds a method to the String
prototype that calls eval on the contents of every
<script> tag found in the string. Exploiting this func-
tion is trivial: a malicious advertisement need only cre-
ate a string containing a <script> tag and call its
evalScripts method (see Figure 5). This example il-
lustrates that library designers do not expect their functions
to be called with untrusted arguments. This trust assump-
tion is currently valid, as evidenced by the lack of actual
exploits against Twitter, but becomes invalid when hosting
ADsafe-verified advertisements.

To protect themselves from this attack vector, web sites
could remove all potentially exploitable functions, but this
approach has two serious drawbacks. First, the publisher
must modify its page to the specifications of the advertis-
ing network. If an advertising network imposes restrictions
on how their publishers code their web sites, publishers
are likely to sell their advertising space to another adver-
tising network rather than retrofit their web sites. Second,
JavaScript contains many subtly dangerous idioms. Even if
a publisher can rid every page of these idioms, the idioms
are likely to return as developers modify the site. Instead of
forcing each publisher to modify their web pages, we sug-
gest strengthening the sandbox to prevent these prototype
modifications from allowing a guest to breach containment.

5 Blancura

Current statically verified JavaScript subsets are not ro-
bust to prototype extensions. If a web site extends a built-in
prototype object with a new method, guest code can access
that method and, if that method is exploitable, breach the
subset’s containment. We propose further restricting guest
code to prevent this kind of containment breach. Instead
of using a blacklist to ban known-dangerous properties, our



String.prototype.extractScripts = function() {
var matchAll = new RegExp(

Prototype.ScriptFragment, ’img’);
var matchOne = new RegExp(

Prototype.ScriptFragment, ’im’);
return (this.match(matchAll) || []).

map(function(scriptTag) {
return (scriptTag.match(matchOne) ||

[’’, ’’])[1];
});

}
String.prototype.evalScripts = function() {

return this.extractScripts().map(
function(script) { return eval(script) });

}

(a) Relevant host code

<div id="GUESTAD_">
<script>
"use strict";
ADSAFE.go("GUESTAD_", function (dom, lib) {
var expl = ’<script language="javascript">’ +

’... attack code ...<\/script>’;
expl.evalScripts();

});
</script>
</div>

(b) ADsafe-verified guest code implementing exploit

Figure 5. Exploit for twitter.com

system, Blancura, whitelists known-safe properties. In our
system, the guest cannot access exploitable methods defined
by the host because those functions are not on the whitelist.

5.1 Design

To improve isolation, we propose running the host and
each guest in separate JavaScript namespaces. By separat-
ing the namespaces used by different parties, we can let the
host and guest interact with the same objects (e.g., the string
prototype object) without interfering with one another. Es-
sentially, our system whitelists access to property names
within the proper namespace and blocks access to all other
property names. This approach is similar to script accent-
ing [11] and the “untrusted” HTML attribute from [18],
both of which separate the namespaces for each distinct
principal. For example, we prohibit the guest advertisement
from containing the following code:

obj.foo = bar;

Instead, we require foo have a page-unique prefix:

obj.BLANCURA_GUEST1_foo = bar;

The Blancura verifier enforces this property statically by
parsing the guest’s JavaScript and requiring that all property
names begin with the prefix. For dynamic property accesses
(i.e., with the [] operator), Blancura enforces namespace
separation dynamically using the same mechanism ADsafe
uses to blacklist property names.

To generate the page-unique prefix, we leverage the fact
that ADsafe guests already contain a page-unique identi-
fier: the widget ID. ADsafe requires that guest JavaScript
code appears inside a <div> tag with a page-unique id at-
tribute, which ADsafe uses to identify the widget. We sim-
ply use this value, prefixed by BLANCURA_, as the guest’s
page-unique namespace. This technique lets us avoid using

randomization to guarantee uniqueness, dodging the thorny
problem of verifying statically that a piece of code was “cor-
rectly randomized.”

Using separate namespaces protects hosts that add vul-
nerable methods to built-in prototype objects. For example,
if the host page adds a vulnerable right method to the
String prototype, a malicious guest would be unable to
exploit the method because the guest is unable to access the
right property. In some sense, this design is analogous
to doing an access check on every property access where
the property name prefix is the principal making the access
request. Ideally, we would modify the host to use a sepa-
rate namespace (e.g., BLANCURA_HOST_), but advertising
networks are unable to rewrite the publisher’s JavaScript.
In practice, however, we do not expect publishers to add
properties to the built-in prototypes with guest prefixes, an
expectation which is validated by our experiment.

After placing the guest in its own namespace, the guest
is unable to access any of the built-in utility methods be-
cause those methods have not yet been whitelisted. How-
ever, many of those functions are useful and safe to expose
to guest script. To expose these methods to the guest, the
Blancura runtime adds the appropriate property name:

String.prototype.
BLANCURA_GUEST1_indexOf =
String.prototype.indexOf;

The guest code can then call this function as usual using
its prefixed property name, incurring negligible runtime and
memory overhead. Instead of blacklisting dangerous built-
in methods such as concat, this approach lets the subset
designer expose carefully vetted methods to the guest indi-
vidually instead of punting the issue to the developers who
use the subset.

Adding prefixes to property names does not measurably
affect runtime performance. When the JavaScript compiler
parsers a JavaScript program, it transforms property name



strings into symbolic values (typically a 32-bit integer), and
the symbols generated with and without the prefix are the
same. Whitelisting existing properties of a built-in object
does incur a tiny memory overhead because more entries are
added to the object’s symbol table, but this memory over-
head amounts to only a handful of bytes per property. Em-
ulating DOM interfaces that use getters and setters (such as
innerHTML) incurs some run-time cost because the run-
time must install a custom getter or setter with the prefixed
name. However, systems like ADsafe often wrap the native
DOM with a library free of getters and setters [14].

5.2 Implementation

We implemented Blancura by modifying the ADsafe ver-
ifier. Using a 43 line patch, we replaced the blacklist used
by ADsafe’s static verifier with a whitelist. By making min-
imal modifications to the ADsafe verifier, we have a high
level of assurance that our implementation is at least as cor-
rect as ADsafe’s implementation, which has been vetted by
experts in a public review process. Additionally, Blancura
is a strict language subset of ADsafe, ensuring that any vul-
nerabilities in Blancura are also vulnerabilities in ADsafe.
Our verifier is available publicly at http://webblaze.
cs.berkeley.edu/2010/blancura/.

To demonstrate that Blancura is as expressive as ADsafe,
we implemented a source-to-source compiler that translates
ADsafe widgets into Blancura widgets by prefixing each
property name with the appropriate namespace identifier.
We implemented our compiler by modifying the Blancura
verifier to output its parsed representation of the widget.
Our compiler is idempotent: if the input program is already
in the Blancura subset, the output of the compiler will be
identical to the input. The compiler can, therefore, also be
used as a Blancura verifier by checking whether the output
is identical to the input.

Although we have based our implementation of Blancura
on ADsafe, we can apply the same approach to the other
JavaScript subsets that use static verification, such as Dojo
Secure or Jacaranda. In addition, our approach of whitelist-
ing property names is also applicable to FBJS even though
FBJS is based on a source-to-source compiler and not a
static verifier. In each case, using the Blancura approach
improves the security of the system with minimal cost.

5.3 Imperfect Containment

Despite improving the containment offered by static ver-
ifiers, a host page can still compromise its security and let a
guest advertisement breach containment because JavaScript
programs can call some methods implicitly. For example,
the toString and valueOf methods are often called
without their names appearing explicitly in the text of the

program. If the host page overrides these methods with
vulnerable functions, a malicious guest might be able to
breach containment. In our experiment, the only site that
overrode these methods was Facebook, which replaced the
toString method of functions with a custom, but non-
exploitable, method.

A host page can also compromise its security if it stores a
property with a sensitive name in a built-in prototype object
because guests can observe all the property names using the
for(p in obj) language construct. Similarly, a guest
can detect the presence of other guests (and their widget
identifiers) using this technique. We could close this infor-
mation leak by banning this language construct from Blan-
cura, but we retain it to keep compatibility with ADsafe and
because, in our experiment, we did not observe any sites
storing sensitive property names in prototype objects.

6 Conclusions

Existing secure JavaScript subsets that use statically
verified containment blacklist known-dangerous properties.
This design works well on the empty page where the set of
functions accessible from the built-in prototype objects is
known to the subset designer. However, when verified ad-
vertisements are incorporated into publisher web sites, the
advertisement can see methods added to the built-in proto-
types by the publisher. If the publisher does not carefully
vet all such functions, a malicious advertisement can use
these added capabilities to breach the subset’s containment
and compromise the publisher’s page.

To determine whether this infelicity is a problem in prac-
tice, we analyzed the non-adult web sites from the Alexa
Top 100 most-visited web sites in the United States. We
found that over a third of these web sites contain functions
that would be exploitable by an ADsafe-verified advertise-
ment displayed on their site. In fact, we found that once a
web site adds a non-trivial number of functions to the built-
in prototypes, the site is likely to be exploitable. From these
observations, we conclude that JavaScript subsets that use
statically verified containment require improvements before
they can be deployed widely.

We propose improving these systems by revising a de-
sign choice. Instead of blacklisting known-dangerous prop-
erties, we suggest whitelisting known-safe properties by
restricting the guest advertisement to accessing property
names with a unique prefix. This mechanism prevents ad-
vertisements from accessing properties installed by the host
page while maintaining the performance and deployment
advantages of static verification. With our proposal, the web
sites in our study do not need to be modified in order to host
untrusted advertisements securely.



Acknowledgements. We would like to thank Douglas
Crockford, David-Sarah Hopwood, Collin Jackson, Mark
Miller, Vern Paxson, Koushik Sen, Dawn Song, David
Wagner, and Kris Zyp for feedback and helpful conver-
sations throughout our work on this project. This ma-
terial is based upon work partially supported by the Na-
tional Science Foundation under Grant No. 0430585 and the
Air Force Office of Scientific Research under MURI Grant
No. 22178970-4170.

References

[1] Alexa - Top Sites in United States. http://alexa.
com/topsites/countries/US.

[2] google-caja. http://code.google.com/p/
google-caja/.

[3] Live Labs Web Sandbox. http://websandbox.
livelabs.com/.

[4] Who’s using Prototype. http://www.
prototypejs.org/real-world.

[5] Caja Test Bed, August 2009. http:
//cajadores.com/demos/testbed/.

[6] HTML 5: A vocabulary and associated APIs for
HTML and XHTML, April 2009. http://www.
w3.org/TR/2009/WD-html5-20090423/.

[7] Performance of cajoled code, August 2009. http:
//code.google.com/p/google-caja/
wiki/Performance.

[8] Prototype JavaScript Framework, May 2009. http:
//www.prototypejs.org/.

[9] Adam Barth, Collin Jackson, and William Li. Attacks
on JavaScript Mashup Communication. In Web 2.0
Security and Privacy Workshop 2009 (W2SP 2009),
May 2009.

[10] Adam Barth, Joel Weinberger, and Dawn Song. Cross-
origin JavaScript capability leaks: Detection, exploita-
tion, and defense. In Proc. of the 18th USENIX Se-
curity Symposium (USENIX Security 2009). USENIX
Association, August 2009.

[11] Shuo Chen, David Ross, and Yi-Min Wang. An anal-
ysis of browser domain-isolation bugs and a light-
weight transparent defense mechanism. In CCS ’07:
Proceedings of the 14th ACM Conference on Com-
puter and Communications Security, pages 2–11, New
York, NY, USA, 2007. ACM.

[12] Steven Crites, Francis Hsu, and Hao Chen. OMash:
enabling secure web mashups via object abstractions.
In CCS ’08: Proceedings of the 15th ACM Conference
on Computer and Communications Security, pages
99–108, New York, NY, USA. ACM.

[13] Douglas Crockford. ADsafe. http://www.
adsafe.org.

[14] Douglas Crockford. ADsafe DOM API. http://
www.adsafe.org/dom.html.

[15] David-Sarah Hopwood. Jacaranda Language Spec-
ification, draft 0.3. http://www.jacaranda.
org/jacaranda-spec-0.3.txt.

[16] David-Sarah Hopwood. Personal Communication,
June 2009.

[17] Frederik De Keukelaere, Sumeer Bhola, Michael
Steiner, Suresh Chari, and Sachiko Yoshihama.
SMash: secure component model for cross-domain
mashups on unmodified browsers. In WWW ’08: Pro-
ceeding of the 17th international conference on World
Wide Web, pages 535–544, New York, NY, USA.
ACM.

[18] Adrienne Felt, Pieter Hooimeijer, David Evans, and
Westley Weimer. Talking to strangers without tak-
ing their candy: isolating proxied content. In Social-
Nets ’08: Proceedings of the 1st Workshop on Social
Network Systems, pages 25–30, New York, NY, USA,
2008. ACM.

[19] Salvatore Guarnieri and Benjamin Livshits. Gate-
keeper: Mostly static enforcement of security and re-
liability policies for javascript code. In Proc. of the
18th USENIX Security Symposium (USENIX Security
2009). USENIX Association, August 2009.

[20] Jon Howell, Collin Jackson, Helen J. Wang, and Xi-
aofeng Fan. MashupOS: operating system abstrac-
tions for client mashups. In HotOS ’07: Proceedings
of the 11th USENIX workshop on Hot topics in operat-
ing systems, pages 1–7, Berkeley, CA, USA. USENIX
Association.

[21] Collin Jackson and Helen J. Wang. Subspace: se-
cure cross-domain communication for web mashups.
In WWW ’07: Proceedings of the 16th international
conference on World Wide Web, pages 611–620, New
York, NY, USA, 2007. ACM.

[22] Dan Kaplan. Malicious banner ads
hit major websites, September 2007.
http://www.scmagazineus.com/
Malicious-banner-ads-hit-major-websites/
article/35605/.



[23] S. Maffeis, J.C. Mitchell, and A. Taly. Run-time en-
forcement of secure javascript subsets. In Proc of
W2SP’09. IEEE, 2009.

[24] S. Maffeis and A. Taly. Language-based isolation of
untrusted Javascript. In Proc. of CSF’09, IEEE, 2009.
See also: Dep. of Computing, Imperial College Lon-
don, Technical Report DTR09-3, 2009.

[25] Sergio Maffeis, John C. Mitchell, and Ankur Taly. An
Operational Semantics for JavaScript. In APLAS ’08:
Proceedings of the 6th Asian Symposium on Program-
ming Languages and Systems, pages 307–325, Berlin,
Heidelberg, 2008. Springer-Verlag.

[26] Microsoft Live Labs. Microsoft Web Sand-
box. http://www.websandbox-code.org/
Samples/genericSample.aspx.

[27] Elinor Mills. Malicious Flash ads attack, spread via
clipboard, August 2008. http://news.cnet.
com/8301-1009_3-10021715-83.html.

[28] Ashlee Vance. Times Web Ads Show Se-
curity Breach, September 2009. http:
//www.nytimes.com/2009/09/15/
technology/internet/15adco.html.

[29] Chuan Yue and Haining Wang. Characterizing in-
secure JavaScript practices on the web. In WWW
’09: Proceedings of the 18th international conference
on World Wide Web, pages 961–970, New York, NY,
USA, 2009. ACM.

[30] Kris Zyp. Secure Mashups with dojox.secure. http:
//www.sitepen.com/blog/2008/08/01/
secure-mashups-with-dojoxsecure/.



A Alexa US Top 100

We list here the subset of the sites in the Alexa US Top 100 sites that we used in our experiment. Note that the subset does
not include the nine adult sites listed at the time of access, nor does it include blogger.com because it is the same site as
blogspot.com. Alexa was accessed on May 1, 2009 to obtain the list of sites.

Rank Website # Suspicious Edges
1 google.com 0
2 yahoo.com 0
3 facebook.com 17
4 youtube.com 2
5 myspace.com 36
6 msn.com 14
7 live.com 0
8 wikipedia.org 0
9 craigslist.org 0

10 ebay.com 13
11 aol.com 9
12 blogspot.com 13
13 amazon.com 2
14 go.com 0
15 cnn.com 33
16 twitter.com 60
17 microsoft.com 35
18 flickr.com 12
19 espn.go.com 1
20 photobucket.com 60
21 wordpress.com 0
22 comcast.net 62
23 weather.com 0
24 imdb.com 0
25 nytimes.com 61
26 about.com 0
27 doubleclick.com 1
29 linkedin.com 0
30 apple.com 16
31 cnet.com 72
32 verizon.net 0
33 vmn.net 18
34 netflix.com 17
35 hulu.com 63
36 mapquest.com 5
37 att.net 0
38 rr.com 70
39 adobe.com 59
40 foxnews.com 52
42 ask.com 0
43 mlb.com 3
44 rapidshare.com 0
45 answers.com 3
46 walmart.com 0
48 fastclick.com 0

Rank Website # Suspicious Edges
51 reference.com 10
52 bbc.co.uk 0
53 target.com 0
54 tagged.com 44
55 ning.com 0
56 careerbuilder.com 37
57 dell.com 0
59 disney.go.com 0
60 digg.com 1
61 att.com 0
62 usps.com 63
63 typepad.com 0
64 wsj.com 64
65 ezinearticles.com 0
66 bestbuy.com 1
67 foxsports.com 0
68 livejournal.com 20
69 thepiratebay.org 14
70 ehow.com 13
71 imageshack.us 2
72 tribalfusion.com 0
74 aweber.com 0
75 ups.com 0
76 megavideo.com 0
77 yelp.com 66
78 mozilla.com 0
79 deviantart.com 9
80 expedia.com 0
82 pandora.com 0
83 nba.com 61
84 newegg.com 28
86 irs.gov 0
87 washingtonpost.com 0
88 cox.net 0
89 dailymotion.com 72
91 download.com 72
92 reuters.com 2
93 zedo.com 2
94 monster.com 17
95 people.com 1
96 verizonwireless.com 37
97 realtor.com 1
98 ign.com 9
99 pogo.com 0

100 latimes.com 1

Table 2. Subset of the Alexa US Top 100 sites used in the experiment.


